I try not to get into politics or controversy, but this issue is so critical, and the two candidates so contrasting, that I cannot resist asserting my position on this, the most contentiously debated concern of our time: “Which is better, charcoal or gas?” I hereby express my wholehearted endorsement of charcoal.
Caution: The opinions expressed below are inflammatory. Reader discretion is advised.
Grilling is hot these days. (Weak pun intended.) I have eleven grilling cookbooks on my bookshelves, but they all shrewdly gloss over two important points: that grilling and barbecuing are not the same thing, and that all fuels are not created equal.
Recognizing that almost no one understands the distinction between grilling and barbecuing, the cookbooks include both kinds of recipes in order to appeal to as many backyard Escoffiers as possible. And because an estimated 70 percent of all “barbecue grills” (a name that only compounds the confusion) in the United States are gas-fired, the authors stifle their unanimous but secret conviction (which they would admit only under oath) that charcoal is clearly superior to gas for grilling. An author cannot afford to lose a major segment of his or her potential readers, many of whom have shelled out big bucks for Brobdingnagian stainless steel, 18-wheeler gas grills equipped with everything but cruise control and a global positioning system.
In true grilling, the food is placed within several inches of a very hot-500 to 1000 °F (260 to 540°C), smoke-free fire and cooked quickly. Think of steaks, chops, hamburgers, kebabs, sausages, chicken parts, whole fish and shrimp, to name the most commonly grilled foods.
Barbecuing, on the other hand, consists of long (several hours), slow, relatively low-temperature cooking, 300 to 350°F (about 150 to 180°C) or even lower, with the food confined in a pit or some sort of enclosure along with a (generally) smoky fire. Think of beef or pork ribs, pork shoulder, or brisket being slathered with top-secret sauces by men wearing cowboy hats. I’ll stick to grilling here.
There are three kinds of fuels: lump charcoal, briquettes, and gas.
• Lump charcoal: If wood is heated in the absence of oxygen (a process called destructive distillation), it can’t burn. Instead, it decomposes. First, its water is driven off. Then its carbohydrates (mainly cellulose and lignin) begin to break down into methyl alcohol (therefore known as wood alcohol), acetic acid, acetone, formaldehyde, and many other smokes and gases. Eventually, nothing is left but virtually pure carbon. That’s lump charcoal.
For at least four thousand years, people have been making charcoal from wood for use as a cooking fuel. Contrary to an oft-repeated legend, charcoal was not invented by Henry Ford. Nor, I might add, did he invent wood or fire.
Today’s commercial lump charcoal, still retaining the shapes of the wood chunks it was made from, burns hot and clean, with minimal amounts of smoke. It therefore earns my vote (and the secret ballots of most grilling experts) as the best possible fuel for grilling. There’s no fuel like an old fuel.
Briquettes: Briquettes, and I won’t call them charcoal briquettes because they contain so much other stuff besides charcoal, were not invented by Henry Ford either. Fuel briquettes were invented and patented by one Orin F. Stafford, a professor at the University of Oregon. Then Ford, always looking to make a buck, jumped in and built a plant to manufacture briquettes on a grand scale, thereby turning the waste sawdust and wood scraps from his Model T plant into a profitable product.
Originally, briquettes were made from powdered charcoal, compressed and bound with starch. But today they’re not that simple. According to a 2000 publication of the Kingsford Products Company, heir to the Ford Charcoal Company, their briquettes contain wood charcoal, mineral char (a soft, brown coal), mineral carbon (graphite), limestone (to produce that nice coating of white ash), starch (as binder), borax (helps release the briquettes from the molds), sawdust (for easier ignition) and sodium nitrate, which releases oxygen when heated and speeds the burn.
Personally, I would rather not have tar-laden coal, starch, borax, and sawdust burning beneath my steak.
• Gas: The fuel used in modern gas grills is either methane (natural gas, CH4) or propane, whose molecules are made of nothing but carbon atoms and hydrogen atoms. And that’s the difference between charcoal (carbon) and gaseous fuels: the hydrogen atoms. While charcoal burns to produce only carbon dioxide (and some carbon monoxide), methane and propane produce both carbon dioxide and water vapor. Hold a transparent glass dish briefly above a gas flame and you’ll see it fog up with condensed water.
Each molecule of burned propane produces four molecules of water. In a typical 40,000 -Btu-per-hour gas grill, that translates to 1 1/2 quarts of water being given off per hour. The bottom surface of the meat is thus being steamed, and its temperature cannot get as high as with dry-burning charcoal. No wonder you can’t quite achieve that flavorful, seared brown crust that charcoal produces.
Case closed.
Grilling mavens distinguish between two techniques: direct grilling, where the meat is placed directly above a bed of charcoal, and indirect grilling, where the charcoal pile is off to one side.
In the direct method, the heat reaches the meat by both convection (rising hot air) and radiation (infrared rays). In the indirect method, since the meat isn’t directly above the heat source, the heat reaches the meat predominantly by radiation. The third heat transmission mechanism, conduction, doesn’t play much of a role in grilling.
The meat therefore doesn’t attain as high a temperature in the indirect method and cooks more slowly. If the cooking apparatus is covered, the rising hot air from the coals is trapped and circulates throughout the enclosure, making it into a sort of convection oven. Throw in a few chips of moistened hardwood and you can smoke the food at the same time.
Whoops! In that last paragraph I have slipped from grilling into barbecuing. That’s easy to do, because the same equipment can be used for both, and few people, including the manufacturers of the equipment, bother to make the verbal distinction.